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Abstract. Recently Biedenharn and Gamba described a simple group-theoretical method to 
calculate thequantitativesplittingofadegenerateenergy level under theaction ofa symmetry- 
breaking hamiltonian. In this paper we provide the general proofs for the rules of the method 
and clarify the group-theoretical background. Furthermore we discuss the various kinds of 
multiplicities which can arise and the difficulties which they entail. 

1. Introduction 

The quantitative problem of the splitting of a degenerate level under the action of a 
symmetry-breaking hamiltonian was recently discussed by Biedenharn and Gamba 
(1972). They presented a method to  solve this problem in an elegant way, which is 
shorter and simpler than the more conventional methods (cf for example Judd 1963). 
In these conventional methods one first of all has to calculate a number of matrix 
elements of the perturbation hamiltonian (either by applying the Wigner-Eckart 
theorem or by using an operator equivalent approach, see Judd (1963) and Stevens 
(1952)) and then ane has to  solve a secular equation. The most important advantages 
of the method discussed by Biedenharn and Gamba (1972) are that one does not need 
any Clebsch-Gordan coefficient and that it is not necessary to  solve a secular equation. 
The fact that Clebsch-Gordan coefficients (or operator equivalents) are not required 
implies that the method of Biedenharn and Gamba (1972) is applicable to symmetry 
groups, the Clebsch-Gordan coefficients of which are not explicitly known. 

Although it was shown by Biedenharn and Gamba (1972) that the method works 
in some explicit examples a general proof of the rules of the method was lacking. 

In this paper we shall present a different presentation of the techniques developed 
by Biedenharn and Gamba (1972), which proves the rules and clarifies the method in 
terms of the familiar concepts of the Racah-Wigner calculus§. 

2. The physical problem 

Let H, be the hamiltonian of a physical system and let Y be the symmetry group of 
this system. We assume that we know precisely the spectrum of H,, ie its eigenvectors 

t O n  leave from the University of Groningen, The Netherlands. 
$ Fulbright Scholar. 
0 Another paper which has the same in view is L Basano and R Cenni Atomic Level Splitting by External Fields 
(Genova preprint). 
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and corresponding eigenvalues. The eigenvectors can be labelled by the set of quantum 
numbers ( J ,  M ) ,  where (J) denotes an irreducible representation of dimension [ J ]  of Y, 
whereas M specifies the [ J ]  basis vectors of the carrier space or representation space of 
( J ) .  The eigenvalues depend only on J and we write them as aJ. 

Now we introduce a perturbation hamiltonian H,,  with symmetry group A? which 
is a subgroup of 9. The symmetry group of the total hamiltonian H = H, + H, is then 
also 2. The eigenvectors of H = H , + H ,  will be labelled by quantum numbers 
( j ,  m), where ( j )  is an irreducible representation of 2 and m denotes the basis vectors 
spanning the representation space of ( j ) .  In general the degenerate level corresponding 
to an irreducible representation ( J )  of Y will split into levels corresponding to irreducible 
representations ( j )  of A?. The problem is now to determine the relative magnitudes of 
the shifts. 

To specify the problem we assume that H , transforms under Y as a component 
TSrK of an irreducible tensor operator T K s T K  of rank K or more generally as a linear 
combination 

of such components. The index T K  is a multiplicity index (cf 4 5). The constants cM 
have to  be chosen in such a way that V,,,, is an invariant of the subgroup A? of Y (cf 4 3) .  

We want to know how the [ J ]  fold degenerate energy level corresponding to the 
irreducible representation ( J )  of '3 splits under the action of V,,,, . From perturbation 
theory it is known that to  this end one has to diagonalize the matrix with elements 

the eigenvalues of which determine the energy shifts with respect to the unperturbed 
energy level. (In order to obtain real shifts we assume V,,,, to be hermitian.) 

Therefore we have to do with the eigenvalue problem of V,,,, restricted to the 
representation space of ( J ) .  We shall denote this restriction of VK,rK by VK,rK(J). 

As an example let us consider the splitting of an atomic level (characterized by the 
angular momentum L under the rotation group R,) when placed in a crystalline field of 
octahedral symmetry (Biedenharn and Gamba 1972). We consider the quantitative 
effects of a symmetry-breaking hamiltonian, invariant under the octahedral group and 
transforming as a tensor operator V, under R, (see equation (1)).  The multiplicity 
index O, can be omitted in this case. By working out explicitly the perturbation equations 
(see Judd 1963 for details), one can write the results as in table 1. 

The columns are labelled by ( j i )  (i = 1,2, .  . . , 5 )  denoting the irreducible representa- 
tions of the octahedral group. The rows labelled VK(0), VK( l ) ,  VK(2), etc give the quan- 
titative splitting for the corresponding field. For example, from table 1 one can read off 
immediately that the energies of the three levels resulting from an L = 3 state are given 
by 

E ,  = a - b + 9 c  

E ,  = a + 3 b - 5 c  

E ,  = a-6b-12c  

corresponding to ( j,), 

corresponding to ( j,), 

corresponding to (is), 
where a, b, c are the strengths of the perturbing fields transforming as V,, V, and V, 
respectively. 

It is clear that the entries in table 1 are the eigenvalues of the various operators 
VK(L) up to an L-dependent constant. The operator V4(2), for example, has a three-fold 
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Table 1. 

4 V0(4) 1 1 I 1 0 
V4(4) 14 - 13 2 7 0 
VJ4) -20 - 5  16 1 0 
V&4) - 10 0 -7 8 0 

. I  . .  . .  . .  . .  . .  . . . .  

degenerate eigenvalue - 2 and a doubly degenerate eigenvalue 3 up to  a common factor 
(note that [ j , ]  = 3 and [ j , ]  = 2). 

To avoid the elaborate and tedious diagonalization process to  determine these 
eigenvalues Biedenharn and Gamba proposed a procedure, which is faster and rather 
elegant. Their method makes use of a set of heuristic rules which, for the convenience 
of the reader, will be given below (in our notation). 

Biedenharn and Gamba consider the algebra generated by the irreducible representa- 
tions (ji), i = 1 ,2 , .  . . , 5 ,  with multiplication rule 

( j l ) @ ( j 2 )  = 1 { j 1 j 2 j 3 } ( j 3 L  
j 3  

where { j ,  j J 3 }  is a 3j symbol which gives the number of times that ( j , )  is contained in 
( j ,)@( j 2 ) .  In this algebra they define elements 

which correspond to  the above mentioned operators V'(L) and where the U? are the 
entires of the row labelled by VK(L) in table 1 (the - sign indicates that we now have to 
deal with elements of the representation algebra). Furthermore two kinds of products 
are defined for the PK(L) : the inner product 

and the outer product 

(The numbers between square brackets refer to  the equations in Biedenharn and Gamba 
1972.) 
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Next the trace of pK(L) is defined to  be 

Tr(pK(L)) = a Y L [ j ] .  
j 

The rules proposed by Biedenharn and Gamba are now : 

po(L)@ p'(L') = linear combination of pK(L") ,  

where 

L" = IL-L'/ ,IL-L'I+ 1 , .  . . , L + L ' ,  

and 

V'(L)PK,(L) = linear combination of pK,(L) 

with 

K" = lK-K'J,IK-K'I+l) . . . )  K + K ' .  

These rules are sufficient to  determine the entries of table 1, as soon as one knows the 
qualitative part of the splitting, ie which entries in the rows Vo(L) are equal to  one (this 
tells us which levels will play a role in the splitting). The orthogonality relation [16] 
provides us then immediately with the entries of the row V4(2). The entries of the row 
V4(3) can be determined by applying equation [19]. To this end one has to write 
p4(3) = a ( j 2 ) + b ( j 4 ) +  y ( j , )  and to  solve a, b and y together with the constants A,  B and 
C from the equation 

(note that the coefficients a, f l  and y are only defined up to a factor, which can be absorbed 
into C). The entries in the row VJ3) can immediately be found by using orthogonality 
with V0(3) and V'(3). With the same procedure one can complete the table for L = 4. 

In the next sections we shall prove that the rules, applied above in the special case 
of the rotation group and one of its subgroups, hold for a large class of groups and 
subgroups and we shall point out t o  what extent the Biedenharn-Gamba method can 
be applied. This will be done by using the well known Racah-Wigner calculus for an 
arbitrary group and some character theory. 

3. Inner and outer products 

We shall introduce 'inner' and 'outer' products for the operators VKITK(J). To begin 
with we shall show that the coefficients cM of equation (1) have to  satisfy 
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The proof is very easy : 

u,V,,,,U, ' = C C ~ U , T $ ~ ~ U R '  
M 

= cM D ~ ? ~ ( R ) T $ : K  
M M' 

(The U ,  is a unitary operator representing the group element R in the same Hilbert 
space as in which V,,,, operates, cf Edmonds 1957, Rose 1957 and Lomont 1959.) 
Equation (3) says that the vector c = ( c 1 ,  c 2 , .  . . , qK1) is a simultaneous eigenvector of 
the set of matrices D ( K ) ( R )  with simultaneous eigenvalue 1, for all R E 2. 

Now the set of matrices D K ) ( R ) ,  R E 2, form a representation of H (which is in 
general reducible). So we can also formulate the above statement by saying that the 
one-dimensional subspace spanned by the vector c is the representation space of the 
trivial representation (1 of X .  From this it follows that one can find a vector c satisfying 
equation (3) ifand only if the irreducible representation ( K )  of 9, restricted to  &' contains 
the trivial representation (11) of H at least once. More specifically, if this restriction 
contains the trivial representation (1 ') of X n times, then one can find n linearly independ- 
ent vectors c, satisfying equation (3) and therefore also n linearly independent operators 
VK,TK can be constructed out of a certain set T$'"(M = 1,. . . , [ K ] ) .  

In order to introduce 'inner' and 'outer' products of operators of the type VK,rK(J), 
we first limit ourselves to the operators T2'K(J)  and S;:TK'(J')  (ie the restrictions of 
T K . T K  M and SE:TK) to the representation spaces of ( J )  and ( J ' )  respectively). 

According to a well known principle (Edmonds 1957, Rose 1957) one can construct 
new irreducible tensor operators U$:'K" from T$rK and 

(here the convention for summation over repeated indices is assumed). In (5) the 
symbol (. . .) is a 3jm symbol of Clebsch-Gordan coefficient, in which the multiplicity 
parameter T ~ , ,  numbers the several irreducible representations ( K " )  which are contained 
in ( K ) @ ( K ' ) .  The asterisk in TZrK*SE:rK' stands for ordinary operator multiplication 
if TZrK and S % : I K '  operate in the same Hilbert space. If  T2rK and SE:'K' operate in 
different Hilbert spaces it  means a direct product. In both cases the UKM)::rK" are the 
components of an irreducible tensor operator of rank K" (cf Edmonds 1957, Rose 
1957). 

From equation (5) it follows that 

First we consider the case that T$'K and SE;'K' operate in the same Hilbert space. We 
restrict all operators of equation (6) to  the same subspace ( J ) ,  which provides us with 

We shall call this expression the inner product of T z T K ( J )  and SK,':'"'(J). Next we 
suppose T$'K and SE:rK' to  be operators in different Hilbert spaces and restrict them 
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to  subspaces ( J )  and ( J ' )  respectively. We define the outer product of T$'"(J) and 
S;:'K'(J') as 

Now we consider the operators 

' K , ~ K ( ~ )  = C M T 2 7 K ( J )  and & I , ~ ~ , ( J )  = ~ M , T ; : ' ~ ' ( J ) ,  
M M '  

where the vector c satisfies equation (2) and the vector d satisfies 

From equation (7) we have 

vK,7~(J)vK',~~,(J) 

The vector f (we suppressed the K ,  K ' ,  K" and 'I~,, dependence) with components 
f M . .  ( M "  = 1,2,. . . , [K"]) has again the property 

Df?&(R)fM,, = fN.. , V R R E .  (1 1) 
M" 

The proof is as follows : 

C ~ f , ' h , , ( ~ ) f ~ , ,  
M 

We applied equations (3), (9) and equation (5-145) of Hamermesh (1964) adapted 

This result allows us to  write equation (10) as 
in such a way as to  include a multiplicity index (cf also Wigner 1965). 

in which the AKr*,tK,,  are certain numerical constants. The coefficients AK,e,7K,, vanish 
if the 3j symbol {K K' K " }  = 0. The multiplicity index tK,, numbers the different ways 
in which (K") is contained in (K)@(K').  
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Along the same lines we can derive 

VK,r~(J)@ V K f , z ~ , ( J ' )  

= B K " , r ~ , , V K " , r ~ , , ( J @ J ' )  = 1 cc:;::;,, VK#',rK,,(J'', 7J")3 (13) 
K " , r r * ?  K",TK" J " , r j , ,  

where the BK,.,zK,,  and the C$vy;,, are again certain numerical constants. The constants 
Cc:;::;tf vanish if { K  K' K " }  = 0 or { J  J '  J " }  = 0. 

To show the relationship with the 'inner' and 'outer' products defined by Biedenharn 
and Gamba (1972) we shall write the operators VK,TK(J)  in an alternative way. Let 

be the reduction of the irreducible representation ( J )  of Y to  irreducible representation 
( j )  of JP ( p j  is a multiplicity index). We shall denote the orthonormal basis vectors 
of the representation space of ( j )  by I j m ;  p j )  ( m  = 1,2,. . . , [ j ] ) .  We know that these 
vectors are eigenvectors of VK,rK(J) and that the eigenvalues a:,!'J do not depend on m, 
because of the invariance of VK,zK(J)  with respect to  X .  Therefore we can write 

in which the samej  occur as in equation (14). 

simultaneously. One has 
In general two operators VK(J)  and V K f ( J )  cannot be brought in diagonal form 

( j l m l p l l  V K ( J H j 2 m 2 ~ 2 )  = A ( j i ~ i ~ 2 ) S j , j Z h m , m z  (16) 

( j l m l p l l  V K ' ( J ) 1 j 2 m 2 p 2 )  = A ' ( j l P , P 2 ) G j l j ~ S m 1 m ~ '  (17) 

and 

We have applied here the Wigner-Eckart theorem, noting that VK(J)  is an invariant of 
the group 2. By performing a unitary transformation one can always bring A ( j , p , p 2 )  
into a form A( j lp l )Sp ,pz .  However, in general then A'( j ,p ,p , )  will not simultaneously 
be in the form A ' ( j l p l ) h p l p 2 .  From this discussion it is clear that if the restrictions of the 
representations ( K )  and (K') of Y to  irreducible representations ( j )  of JP are multiplicity 
free, then VK(J)  and V,.(J) can be brought to  diagonal form simultaneously. From now 
on we shall consider cases in which these restrictions are multiplicity free. For the 
inner product of VK,rK(J) and VK,,rK,(J) we then have immediately 

V K , r ~ ( J )  VK',z~~(J) 

= 1 1 Ijm; p j > a j K f J ( j m ;  p.1 J J  "m';  p j . )aF' rK'J ( fm' ;  J ' P j '  pj.l 

( j m :  Pjl. (18) = I j m ;  pj )aEj  ajp,  

j . p j , m  j ' , p j , , m '  

K J  K ' T K P J  

j , p j . m  

In the same way we have for the outer product in the multiplicity-free case 

' K , T K ( ~ ) @  ' K ' , z ~ r ( ~ )  

= Ijm;pj)Qlj'm';pj.)ajKfJaFb:7'J'(jm;pjl@(j'm';pj,l. (19) 
j . p j , m  j ' .p j s ,m'  
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If one defines 

one can derive with the help of an orthogonality relation for 3 jm symbols that 

(21) 

Equations (18) and (21) are a more general and more precise form of equations [12] 
and [13] of Biedenharn and Gamba (1972). Now we have verified that the definitions 
in this paper of inner and outer product are equivalent to  those of Biedenharn and 
Gamba (1972) in the multiplicity-free case and therefore it follows immediately that 
equations (12) and (13) of this paper prove the heuristic rules of equations [24] and [19] 
of Biedenharn and Gamba (1972) and are even a generalization of these rules (note the 
T ~ , ,  and the T ~ , ,  in equation (13)). Our discussion also makes clear why the definitions 
[12] and [13] of Biedenharn and Gamba (1972) cannot be maintained in the non- 
multiplicity-free case. 

V K , T K ( J ) @  VK,,TK,(J') = 1 C 1j"m"; oj, tp jp j , )a jp j  K I K J '  aj ,p j ,  K ' r K S J '  ( j "m";  oj,,pjpjrl. 
jjv jfrmjp p j p  j8aJ* 

4. The trace operation 

We define the trace of the operator V K I T K ( J )  in the conventional way, as being the sum 
of its diagonal elements in some matrix representation. By means of equation (15) it 
can immediately be seen that the definition in Biedenharn and Gamba (1972) (see 
equation [14] of Biedenharn and Gama 1972) is equivalent to ours: 

We can also prove the heuristic rules concerning this trace operator, given in equations 
[15] and [16] of Biedenharn and Gamba (1972). Equation [15] of Biedenharn and 
Gamba (1972) can be proved very easily : 

= c 1  (JlI T""11 J)sK,( l  1) '  (23) 

In equation (23) (Jli TK3rwll J )  denotes a reduced matrix element. In the derivation of 
the above equation a generalization of equation (15) of Wigner (1965) has been used 
(cf also Hamermesh 1964). We remark that in principle the same proof has been given 
in the examples in Q 3 of Biedenharn and Gamba (1972). 

Furthermore we have 

T r ( v K , r K ( J ) v K , , T K , ( J ) )  = AK,TK,,  Tr V ; ( , , , r K r t ( J )  = A ( I ~ ) ~ K * , K '  Tr vil)(J). (24) 
K",rp 
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( ( K * )  is the complex conjugate representation of (K) ) .  In particular 

Tr( VK,TK(J)J!K,,*K*(J)) = 0, if K *  # K'. (25) 

We remark that if K* = K '  it is always possible to  orthogonalize the set VK,rK(J), 
where tK varies over the multiplicity index set of a fixed K ,  such that 

Tr(VK,~K(J)~~*,~K(J))  = 0, if tK # 7,. (26) 

Tr ( h,rK(J)J!K,rK(J)) = [KI - 

It can easily be proved that the normalization 

corresponds with X M  IC&/ = 1 and I(JI/TK9'"IIJ)I = 1. 

5. Discussion of the multiplicity problem 

In the previous sections we have met multiplicities of various kinds: 
(i) a multiplicity (denoted by a) originating from the fact that the reduction of 

Kronecker products of two irreducible representations of &? is not multiplicity-free in 
general : 

(ii) a multiplicity (denoted by t) originating from the fact that the reduction of 
Kronecker products of two irreducible representations of Y is not multiplicity-free in 
general ; 

(iii) a multiplicity (denoted by p )  originating from the fact that the restriction of an 
irreducible representation of Y to irreducible representations of 2 is not multiplicity- 
free in general. 

There is a fourth multiplicity which has to do  with the independent ways in which 
one can construct vectors c satisfying equation ( 3 ) .  However, as was discussed in 5 3 
one can find n linearly independent vectors c ifand only if the restriction ofthe irreducible 
representation ( K )  of Y contains the trivial representation (1 of If n times. Therefore 
this multiplicity is a special case of (iii). The multiplicity described under (i) does not 
give any troubles, because the V,,,JJ) do not depend on them. The multiplicity described 
under (ii) is also not very serious. In this case it  is possible that the index tK in VK,rK(J) 
varies over a range of values. The amounts of splitting cannot be determined then by 
applying the rules proposed (for the multiplicity-free case) by Biedenharn and Gamba, 
because in general one does not have means to distinguish between V',,,(J)-operators 
for different values of tK. If one has means to distinguish between such operators (as in 
SU(3) where one has a symmetric and an antisymmetric octet operator) then one finds 
unambiguous answers. 

The multiplicity mentioned under (iii) is much more serious. As was discussed in 
9 3 two operators VKITK(J) and VK,,rK,(J) can in general not be brought simultaneously 
into diagonal form, in the non-multiplicity-free case. This implies that the definitions 
of the inner and outer products of equations [12] and [13] of Biedenharn and Gamba 
(1972) cannot be maintained and therefore the procedure of Biedenharn and Gamba 
(1972) breaks down. If VK,rK(J)  and V'K,,rK,(J) cannot be diagonalized simultaneously 
the orthogonality relation (24) remains valid, but we cannot use equation (1 8) to  calculate 
the inner product. 

We shall now comment on a related aspect of the multiplicity problem. If one 
considers table 1 of this paper (giving the quantitative splitting of levels with angular 
momentum L = 1,2,3,4, .  . . in a field of octahedral symmetry) one observes that for 
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fixed L the number of participating VK(L) operators equals the number of irreducible 
representations (j,) of the octahedral group, which play a role in splitting the level (L). 
One can prove that this is true in general, as soon as the restriction of the irreducible 
representation ( J )  of Y to irreducible representations ( j )  of the subgroup Yf is multi- 
plicity-free. 

Proofi Let ( J )  be a fixed irreducible representation of 9 and let its reduction to irreducible 
representations ( j )  of 2 be multiplicity-free. We saw in the previous sections that if 
V A J )  is to be an invariant non-vanishing operator with respect to 2, the following 
requirements have to  be fulfilled: 

{ J  K J }  = ( J  J *  K }  > 0 (27) 

and 

( 2 8 )  
1 
- X ' K ' ( S )  > 0, 
h SEJP 

where x ' ~ ' ( S )  is the character of the group element S in the representation ( K ) .  

to 2 contains (1 
representations (K) which fulfil equations (27) and ( 2 8 )  is given by 

This last equation expresses the fact that the irreducible representation ( K )  restricted 
of 2 at least once. More precisely the total number of irreducible 

1 
n ( J )  = { J  J* K } i  1 x ' ~ ' ( S )  

K SEJP 

The 6 symbol in the right-hand side of this equation is equal to 1 if the classes Ws and 
VR of Y in which the elements S and R lie respectively are the same, and is equal to 0 
otherwise. The number gR is the number of elements of 9 lying in V R .  We can perform 
the summation over S giving 

In this equation hR stands for the number of elements of Yf lying in WR.  
If 

( J )  = e" (Apj  = e" bS(j), 
j . p j  j 

where b! denotes the number of times that a certain irreducible representation ( j )  occurs 
in the restriction of ( J )  to Yf ,  it follows that 

Therefore we can write 
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In the case that the restriction of (J) to 2 is multiplicity-free, the numbers b3 are equal to 
1 or 0 and thus 

n(J)  = b;. 
j 

(34) 

The right-hand side of equation (34) just equals the number of irreducible representations 
of H, which are contained in ( J ) $  

From the above proof it also follows that in the non-multiplicity-free case one has 

ie the number of rows in schemes like table 1 is larger than the number of columns. 
This shows once more that for fixed J not all the ‘row vectors’ in such a scheme can 
be orthogonal to each other in the sense that 

1 ajKdJKJ[j] = 0 
j P.I 

if ( K ,  T ~ )  # ( K ‘ ,  T ~ , ) .  
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